J. E. F. T. Ribeiro

Centro de Física das Interacções Fundamentais (CFIF), Departamento de Física, Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal

A simetria do estado Δ₀⁺⁺ implica a existência de três cores: {V, v, A} de forma construir um estado antisimétrico na cor.

 A simetria do estado
 Δ₀⁺⁺ implica a existência de três cores: {V, v, A}
 de forma construir um estado antisimétrico na cor.

$$= \begin{bmatrix} \mathcal{A} \end{bmatrix} \begin{bmatrix} V_1 \\ v_2 \\ A_3 \end{bmatrix} = \begin{vmatrix} V_1 & v_1 & A_1 \\ V_2 & v_2 & A_2 \\ V_3 & v_3 & A_3 \end{vmatrix}$$

	V_1		V_1	v_1	A_1
$= [\mathcal{A}]$	v_2	_	${V}_2$	v_2	A_2
	<u> </u>		V_3	v 3	A_3

A exemplo dos spins em que poderemos usar as matrizes de Pauli {σ_x, σ_y, σ_z} para construir operadores de transição de spin : σ_± = σ_x ± σ_y com σ₊ ↓=↑, σ₋ ↓=↑, também neste espaço de cor poderemos usar oito matrizes para produzir, de fprma análoga transições de cor. São :

	V_1		V_1	v_1	A_1
$= [\mathcal{A}]$	v_2	=	${V}_2$	v_2	A_2
	<u> </u>		${V}_3$	v 3	A_3

A exemplo dos spins em que poderemos usar as matrizes de Pauli {σ_x, σ_y, σ_z} para construir operadores de transição de spin : σ_± = σ_x ± σ_y com σ₊ ↓=↑, σ₋ ↓=↑, também neste espaço de cor poderemos usar oito matrizes para produzir, de fprma análoga transições de cor. São :

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

A cor-II

$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

A cor-II

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

Temos ainda além da matriz diagonal $\lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, uma outra matriz diagonal

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -2 \end{pmatrix}$$

A cor-II

$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

Temos ainda além da matriz diagonal $\lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, uma outra matriz diagonal

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

A exemplo das matrizes de Pauli, também estas são matrizes hermiteanas de traço nulo, chamam-se matrizes de Gell-Man e são os geradores de um grupo chamado SU(3)-na lição III estudaremos sucintamente as consequências deste grupo. Como anteriormente, podem-se organizar as funções de onda na cor em representações do grupo de permutações S_3

Como no caso do spin, organizam-se as funções de onda de cor em representações irrdutíveis que no caso de três quarks são :

Como no caso do spin, organizam-se as funções de onda de cor em representações irrdutíveis que no caso de três quarks são :

 $\{ \bigcup_{singleto \ de \ cor}, \bigoplus_{octeto \ de \ cor}, \bigoplus_{decupleto \ de \ cor} \}$ Com as matrizes de Gell-Man, λ_i , pode-se organizar um vector, $\overrightarrow{\lambda} = \sum_i \lambda_i$ e um produto escalar, $|\overrightarrow{\lambda}|^2 = \overrightarrow{\lambda} \cdot \overrightarrow{\lambda}$. Este escalar chama-se Casimir e, para cada uma das representações irredutíveis, tem um valor distinto. É completamente análogo ao caso do spin (SU(2)): $\overrightarrow{S} = \frac{1}{2} \overrightarrow{\sigma}$, com $\overrightarrow{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$

Como no caso do spin, organizam-se as funções de onda de cor em representações irrdutíveis que no caso de três quarks são :

 $\begin{cases} \bigcup_{singleto \ de \ cor}, \ \bigoplus_{octeto \ de \ cor}, \ \bigoplus_{decupleto \ de \ cor} \end{cases}$ Com as matrizes de Gell-Man, λ_i , pode-se organizar um vector, $\overrightarrow{\lambda} = \sum_i \lambda_i$ e um produto escalar, $|\overrightarrow{\lambda}|^2 = \overrightarrow{\lambda} \cdot \overrightarrow{\lambda}$. Este escalar chama-se Casimir e, para cada uma das representações irredutíveis, tem um valor distinto. É completamente análogo ao caso do spin (SU(2)): $\overrightarrow{S} = \frac{1}{2}\overrightarrow{\sigma}$, com $\overrightarrow{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$ $\begin{pmatrix} Diagrama & \square & \bigoplus \\ Fun. \ de \ onda & \{\uparrow, \downarrow\} & \{\uparrow\uparrow, \frac{1}{2}(\uparrow\downarrow + \downarrow\uparrow), \downarrow\downarrow\} & \frac{1}{2}(\uparrow\downarrow - \downarrow\uparrow)\} \\ Casimir \ S^2 & \frac{1}{2}(\frac{1}{2}+1) = \frac{3}{4} & 2 & 0 \end{pmatrix}$

Como no caso do spin, organizam-se as funções de onda de cor em representações irrdutíveis que no caso de três quarks são :

 $\{ \bigcup_{singleto \ de \ cor}, \bigoplus_{octeto \ de \ cor}, \bigoplus_{decupleto \ de \ cor} \}$ Com as matrizes de Gell-Man, λ_i , pode-se organizar um vector, $\overrightarrow{\lambda} = \sum_i \lambda_i$ e um produto escalar, $|\overrightarrow{\lambda}|^2 = \overrightarrow{\lambda} \cdot \overrightarrow{\lambda}$. Este escalar chama-se Casimir e, para cada uma das representações irredutíveis, tem um valor distinto. É completamente análogo ao caso do spin (SU(2)): $\overrightarrow{S} = \frac{1}{2} \overrightarrow{\sigma}$, com $\overrightarrow{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$ $\begin{pmatrix} Diagrama & \square & \square & \square \\ Fun. \ de \ onda & \{\uparrow, \downarrow\} & \{\uparrow\uparrow, \frac{1}{2}(\uparrow\downarrow + \downarrow\uparrow), \downarrow\downarrow\} & \frac{1}{2}(\uparrow\downarrow - \downarrow\uparrow)\} \\ Casimir \ S^2 & \frac{1}{2}(\frac{1}{2} + 1) = \frac{3}{4} & 2 & 0 \end{pmatrix}$ $\overrightarrow{S}^2 = 0 = (S_1 + S_2)^2 = S_1^2 + S_2^2 + 2S_1 \cdot S_2 = 2\frac{3}{4} + 2S_1 \cdot S_2 \rightarrow S_1 \cdot S_2 = -\frac{3}{4} = \frac{1}{2}(\mathcal{P}^{1,2} - \frac{1}{2})$

Como no caso do spin, organizam-se as funções de onda de cor em representações irrdutíveis que no caso de três quarks são :

 $\{ \Box_{singleto \ de \ cor}, \Box \Box_{octeto \ de \ cor}, \Box \Box_{decupleto \ de \ cor} \}$ Com as matrizes de Gell-Man, λ_i , pode-se organizar um vector, $\overrightarrow{\lambda} = \sum_i \lambda_i$ e um produto escalar, $|\vec{\lambda}|^2 = \vec{\lambda} \cdot \vec{\lambda}$. Este escalar chama-se Casimir e, para cada uma das representações irredutíveis, tem um valor distinto. É completamente análogo ao caso do spin (SU(2)): $\overrightarrow{S} = \frac{1}{2}\overrightarrow{\sigma}$, com $\overrightarrow{\sigma} = \{\sigma_x, \sigma_y, \sigma_z\}$ $\begin{pmatrix} Diagrama & \Box & \Box & \Box \\ Fun. \ de \ onda & \{\uparrow, \downarrow\} & \{\uparrow\uparrow, \frac{1}{2}(\uparrow\downarrow+\downarrow\uparrow), \downarrow\downarrow\} & \frac{1}{2}(\uparrow\downarrow-\downarrow\uparrow)\} \\ \hline Casimir \ S^2 & \frac{1}{2}(\frac{1}{2}+1) = \frac{3}{4} & 2 & 0 \end{pmatrix}$ No caso da cor (SU(3)) temos para $\overrightarrow{\lambda} \rightarrow \frac{\overrightarrow{\lambda}}{2}$: $\begin{pmatrix} Diagrama & \Box & \Box & \Box \\ Casimir & \frac{4}{3} & \frac{10}{3} & 0 \end{pmatrix} \begin{pmatrix} \overrightarrow{S}^2 = 0 = (S_1 + S_2)^2 = S_1^2 + S_2^2 + 2S_1 \cdot S_2 = \\ 2\frac{3}{4} + 2S_1 \cdot S_2 \to S_1 \cdot S_2 = -\frac{3}{4} = \frac{1}{2}(\mathcal{P}^{1,2} - \frac{1}{2}) \end{pmatrix}$

A fenomenologia da cor-continuação

À esquerda: $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$, à direita, $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$. Como $\overrightarrow{\lambda}_i \cdot \overrightarrow{\lambda}_j = \frac{1}{2} (\mathcal{P}^{ij} - \frac{1}{3})$ e $\langle S | \overrightarrow{\lambda}_j | S \rangle = 0$, temos que $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$. Então como $(\mathcal{P}^{25})^2 = 1$ temos que $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$

A fenomenologia da cor-continuação

À esquerda: $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$, à direita, $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$. Como $\overrightarrow{\lambda}_i \cdot \overrightarrow{\lambda}_j = \frac{1}{2} (\mathcal{P}^{ij} - \frac{1}{3})$ e $\langle S | \overrightarrow{\lambda}_j | S \rangle = 0$, temos que $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$. Então como $(\mathcal{P}^{25})^2 = 1$ temos que $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$

A fenomenologia da cor-continuação

À esquerda: $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$, à direita, $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$. Como $\overrightarrow{\lambda}_i \cdot \overrightarrow{\lambda}_j = \frac{1}{2} (\mathcal{P}^{ij} - \frac{1}{3})$ e $\langle S | \overrightarrow{\lambda}_j | S \rangle = 0$, temos que $\langle SS | \mathcal{P}^{25} | SS \rangle = \frac{1}{3}$. Então como $(\mathcal{P}^{25})^2 = 1$ temos que $\langle SS | \mathcal{P}^{25} | \mathcal{OO} \rangle = \pm \frac{2\sqrt{2}}{3}$

À esquerda: Teorema de Wigner-Ekhart: $\frac{1}{2}$ 0λ $\frac{1}{2}$ $\langle S | \vec{\lambda}_j | S \rangle = 0$. Mas com troca, no caso \mathcal{P}^{25} $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

Para se obter uma repusão é preciso um termo $\simeq \overrightarrow{\lambda} \cdot \overrightarrow{\lambda} S \cdot S$. Veremos mais tarde como aparece. Vai envolver a física da quebra expontânea da simetria quiral. Essa quebra vai fornecer o termo $S \cdot S$. Sem ela a repulsão seria fraquinha

Na dado figura à esquerda, num cria-se tempo, nucleão dado um $\hat{b}_{p1}^{\dagger}\hat{b}_{p2}^{\dagger}\hat{b}_{p3}^{\dagger}$, por $\mathcal{N}(p_1, p_2, p_3)$ choca um outro nucleão definido com por $\mathcal{N}(p_4,p_5,p_6) \ \hat{b}^{\dagger}_{p4} \hat{b}^{\dagger}_{p5} \hat{b}^{\dagger}_{p6}$. Os operadores de criação dos quarks são definidos por \hat{b}_{p}^{\dagger} . A distribuição de momentos é dada pelos \mathcal{N} 's. A cada operador de criação está associado um spinor que é função de onda de um quark se fosse livre e não sujeito a \mathcal{N} .

esquerda, Na dado figura à num tempo, cria-se nucleão dado um $\hat{b}_{n1}^{\dagger}\hat{b}_{n2}^{\dagger}\hat{b}_{p3}^{\dagger}$, por $\mathcal{N}(p_1, p_2, p_3)$ choca um outro nucleão definido com por $\mathcal{N}(p_4, p_5, p_6) \ \hat{b}^{\dagger}_{p4} \hat{b}^{\dagger}_{p5} \hat{b}^{\dagger}_{p6}$. Os operadores de criação dos quarks são definidos por \hat{b}_{p}^{\dagger} . A distribuição de momentos é dada pelos \mathcal{N} 's. A cada operador de criação está associado um spinor que é função de onda de um quark se fosse livre e não sujeito a \mathcal{N} .

Cada linha a cores representa a propagação de um quark no espaço de momentos. Por exemplo: $\Lambda^+(p1) = u(p1)u^{\dagger}(p1)$. A Λ dá-se o nome de Projector de Feynman.

Na dado figura à esquerda, num tempo, cria-se nucleão dado um $\hat{b}_{n1}^{\dagger}\hat{b}_{n2}^{\dagger}\hat{b}_{n3}^{\dagger},$ por $\mathcal{N}(p_1, p_2, p_3)$ choca um outro nucleão definido com por $\mathcal{N}(p_4, p_5, p_6) \ \hat{b}^{\dagger}_{p4} \hat{b}^{\dagger}_{p5} \hat{b}^{\dagger}_{p6}$. Os operadores de criação dos quarks são definidos por \hat{b}_{p}^{\dagger} . A distribuição de momentos é dada pelos \mathcal{N} 's. A cada operador de criação está associado um spinor que é função de onda de um quark se fosse livre e não sujeito a \mathcal{N} .

- Cada linha a cores representa a propagação de um quark no espaço de momentos. Por exemplo: $\Lambda^+(p1) = u(p1)u^{\dagger}(p1)$. A Λ dá-se o nome de Projector de Feynman.
- A azul temos um vértice de interação : u[†](p6)λ...u(p5) que descreve a criação de um quark com momento p₆ após a destruição de um quark com momento p₅. Os pontinhos estão lá em substituição de operadores que trabalhem no espaço dos fermiões

Pondo fermiões Transformações Canónicas

 $\{ b_{\mathcal{F}}^{\dagger}(\mathcal{C}), \ b_{\mathcal{F}'}^{\dagger}(\mathcal{C}') \} = 0$ $\{ b_{\mathcal{F}}(k), \ b_{\mathcal{F}'}^{\dagger}(q) \} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ $\{ d_{\mathcal{F}}(k), \ d_{\mathcal{F}'}^{\dagger}(q) \} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ $d_{\mathcal{F}}(k) \in d_{\mathcal{F}'}^{\dagger}(k)$, representam, respectivamente a destruição ou a criação de um antiquark. \mathcal{F} representa tudo o que não seja momentos: representa sabor, cor, spin etc.

Pondo fermiões Transformações Canónicas

 $\{ b_{\mathcal{F}}^{\dagger}(\mathcal{C}), b_{\mathcal{F}'}^{\dagger}(\mathcal{C}') \} = 0$

 $d_{\mathcal{F}}(k)$ e $d_{\mathcal{F}'}^{\dagger}(k)$, representam, respectivamente a destruição ou a criação de $\{b_{\mathcal{F}}(k), b_{\mathcal{F}'}^{\dagger}(q)\} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ um antiquark. \mathcal{F} representa tudo o que $\{d_{\mathcal{F}}(k), d_{\mathcal{F}'}^{\dagger}(q)\} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ não seja momentos: representa sabor, cor, spin etc.

Na literatura podem-se encontrar várias versões do mesmo campo fermiónico: diferem por normalizações triviais

$$\begin{split} \Psi^{BD}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^{3/2}} \left[\frac{m}{E}\right]^{1/2} \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip\mu x^{\mu}}{\hbar}} + d_s^{\dagger}(p)v(p,s)e^{\frac{+ip\mu x^{\mu}}{\hbar}} \right\} \\ \Psi^{IZ}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^3} \left[\frac{m}{E}\right] \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip\mu x^{\mu}}{\hbar}} + d_s^{\dagger}(p)v(p,s)e^{\frac{+ip\mu x^{\mu}}{\hbar}} \right\} \\ \Psi^{P}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^{3/2}} \left[1\right] e^{ip \cdot x} \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip_0t}{\hbar}} + d_s^{\dagger}(p)v(-p,s)e^{\frac{+ip_0t}{\hbar}} \right\} \end{split}$$

Pondo fermiões Transformações Canónicas

 $\{ b_{\mathcal{F}}^{\dagger}(\mathcal{C}), \ b_{\mathcal{F}'}^{\dagger}(\mathcal{C}') \} = 0$ $\{ b_{\mathcal{F}}(k), \ b_{\mathcal{F}'}^{\dagger}(q) \} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ $\{ d_{\mathcal{F}}(k), \ d_{\mathcal{F}'}^{\dagger}(q) \} = \delta(k-p)\delta_{\mathcal{F},\mathcal{F}'}$ $d_{\mathcal{F}}(k) \in d_{\mathcal{F}'}^{\dagger}(k)$, representam, respectivamente a destruição ou a criação de um antiquark. \mathcal{F} representa tudo o que não seja momentos: representa sabor, cor, spin etc.

Na literatura podem-se encontrar várias versões do mesmo campo fermiónico: diferem por normalizações triviais

$$\begin{split} \Psi^{BD}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^{3/2}} \left[\frac{m}{E}\right]^{1/2} \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip_{\mu}x^{\mu}}{\hbar}} + d_s^{\dagger}(p)v(p,s)e^{\frac{+ip_{\mu}x^{\mu}}{\hbar}} \right\} \\ \Psi^{IZ}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^3} \left[\frac{m}{E}\right] \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip_{\mu}x^{\mu}}{\hbar}} + d_s^{\dagger}(p)v(p,s)e^{\frac{+ip_{\mu}x^{\mu}}{\hbar}} \right\} \\ \Psi^{P}(\overrightarrow{x},t) &= \int \frac{d^3p}{(2\pi\hbar)^{3/2}} \left[1\right] e^{ip \cdot x} \sum_{s} \left\{ b_s(p)u(p,s)e^{\frac{-ip_{0}t}{\hbar}} + d_s^{\dagger}(p)v(-p,s)e^{\frac{+ip_{0}t}{\hbar}} \right\} \end{split}$$

Em todos os casos { $\Psi_{\mathcal{F}}(x,t), \Psi_{\mathcal{F}'}^{\dagger}(x',t)$ } = $\delta_{\mathcal{F},\mathcal{F}'}\delta(x-x')$ à custa de diferentes e triviais normalizações para os operadores de criação e destruição e dos spinores.

Mas existe uma ambiguidade que não é trivial. As relações de anticomutação não são suficientes para definir os operadores de criação e destruição . Eles ficam definidos a menos de uma infinidade de transformações canónicas: $\tilde{b}_{cfs}(\vec{p}) = \hat{S} \, \hat{b}_{cfs} \, \hat{S}^{-1} \dots$ em que \hat{S} , construído à custa dos operdores, $\{\hat{b}, \hat{d}, \dots\}$ tem que ser um escalar

 $\widehat{S}|0\rangle = |\widetilde{0}\rangle, \text{ onde } \widehat{b}|0\rangle = 0. \text{ Isto } \acute{e} |0\rangle \acute{e} \text{ o "vácuo" para os operadores } \widehat{b} \text{ e } \widehat{d}$

Mas existe uma ambiguidade que não é trivial. As relações de anticomutação não são suficientes para definir os operadores de criação e destruição . Eles ficam definidos a menos de uma infinidade de transformações canónicas: $\hat{b}_{cfs}(\vec{p}) = \hat{S} \, \hat{b}_{cfs} \, \hat{S}^{-1} \dots$ em que \hat{S} , construído à custa dos operdores, $\{\hat{b}, \hat{d}, \dots\}$ tem que ser um escalar

 $\widehat{S}|0\rangle = |\widetilde{0}\rangle, \text{ onde } \widehat{b}|0\rangle = 0. \text{ Isto } \acute{e} |0\rangle \acute{e} \text{ o "vácuo" para os operadores } \widehat{b} \text{ e } \widehat{d}$

Com
$$[\mathcal{M}] \left(\hat{p} \right) \ \left(\left[\mathcal{M} \right] \left(\hat{p} \right) \right)^* = I$$
, temos

$$\widehat{S} \begin{bmatrix} \widehat{b}(p) \\ \widehat{d}(p)^+ \end{bmatrix}_s \widehat{S}^{-1} = \begin{bmatrix} \cos \phi(p) & -\sin \phi(p) \mathcal{M}_{ss'}(\hat{p}) \\ \sin \phi(p) \mathcal{M}_{ss'}(\hat{p}) & \cos \phi(p) \end{bmatrix} \begin{bmatrix} \widehat{b}(p) \\ \widehat{d}(p)^+ \end{bmatrix}_s$$

Mas existe uma ambiguidade que não é trivial. As relações de anticomutação não são suficientes para definir os operadores de criação e destruição . Eles ficam definidos a menos de uma infinidade de transformações canónicas: $\tilde{b}_{cfs}(\vec{p}) = \hat{S} \, \hat{b}_{cfs} \, \hat{S}^{-1} \dots$ em que \hat{S} , construído à custa dos operdores, $\{\hat{b}, \hat{d}, \dots\}$ tem que ser um escalar

 $\widehat{S}|0\rangle = |\widetilde{0}\rangle, \text{ onde } \widehat{b}|0\rangle = 0. \text{ Isto } \acute{e} |0\rangle \acute{e} \text{ o "vácuo" para os operadores } \widehat{b} e \widehat{d}$

9 Com
$$[\mathcal{M}](\hat{p}) ([\mathcal{M}](\hat{p}))^* = I$$
, temos

 $\widehat{S} \begin{bmatrix} \widehat{b}(p) \\ \widehat{d}(p)^+ \end{bmatrix}_s \widehat{S}^{-1} = \begin{bmatrix} \cos \phi(p) & -\sin \phi(p) \mathcal{M}_{ss'}(\hat{p}) \\ \sin \phi(p) \mathcal{M}_{ss'}^*(\hat{p}) & \cos \phi(p) \end{bmatrix} \begin{bmatrix} \widehat{b}(p) \\ \widehat{d}(p)^+ \end{bmatrix}_{s'}$ Basta considerar $\Psi_{fc}(\overrightarrow{x}, t)$ como um produto interno entre um espaço (Hilbert) gerado pelos spinores u e v e o espaço (Fock) gerado por { $\hat{b}, \hat{b}^{\dagger}, \hat{d}, \hat{d}^{\dagger}$ } para que a invariância de $\Psi_{fc}(\overrightarrow{x}, t)$ debaixo de rotações no espaço de Fock, obrigue a uma contra-rotação no espaço de Hilbert dos spinores u e v,

$$\begin{bmatrix} u [\phi(p)] \\ v [\phi(p)] \end{bmatrix} (p) = \begin{bmatrix} \cos \phi(p) & -\sin \phi(p) M^*_{ss'}(\hat{p}) \\ \sin \phi(p) M_{ss'}(\hat{p}) & \cos \phi(p) \end{bmatrix} \begin{bmatrix} u [0] \\ v [0] \end{bmatrix} (p)$$

As transformações engendradas por \widehat{S} , chamam-se Transformações de Valatin-Bogoliubov: $|\widetilde{0}\rangle = S|0\rangle = Exp\left\{\widehat{Q}_0^+ - \widehat{Q}_0\right\}|0\rangle$, com

$$\widehat{Q}_0^+(\Sigma) = \sum_{cf} \int d^3p \, \Sigma(p) \, M_{ss'}(\theta, \Phi) \widehat{b}_{fcs}^+(\overrightarrow{p}) \, \widehat{d}_{fcs'}^+(-\overrightarrow{p})$$

As transformações engendradas por \widehat{S} , chamam-se Transformações de Valatin-Bogoliubov: $|\widetilde{0}\rangle = S|0\rangle = Exp\left\{\widehat{Q}_{0}^{+} - \widehat{Q}_{0}\right\}|0\rangle$, com

$$\widehat{Q}_0^+(\Sigma) = \sum_{cf} \int d^3p \, \Sigma(p) \, M_{ss'}(\theta, \Phi) \widehat{b}_{fcs}^+(\overrightarrow{p}) \, \widehat{d}_{fcs'}^+(-\overrightarrow{p})$$

Com a combinação ${}^{3}P_{0}$ para paridade +:

$$M_{ss'}(\hat{p}) = -\sqrt{8\pi} \sum_{m_l m_s} \begin{bmatrix} 1 & 1 & |0| \\ m_l & m_s & |0| \end{bmatrix} \times \begin{bmatrix} 1/2 & 1/2 & |1| \\ s & s' & |m_s| \end{bmatrix} y_{1m_l}(\theta, \Phi)$$

As transformações engendradas por \widehat{S} , chamam-se Transformações de Valatin-Bogoliubov: $|\widetilde{0}\rangle = S|0\rangle = Exp\left\{\widehat{Q}_{0}^{+} - \widehat{Q}_{0}\right\}|0\rangle$, com

$$\widehat{Q}_0^+(\Sigma) = \sum_{cf} \int d^3p \, \Sigma(p) \, M_{ss'}(\theta, \Phi) \widehat{b}_{fcs}^+(\overrightarrow{p}) \, \widehat{d}_{fcs'}^+(-\overrightarrow{p})$$

Com a combinação ${}^{3}P_{0}$ para paridade +:

$$M_{ss'}(\hat{p}) = -\sqrt{8\pi} \sum_{m_l m_s} \begin{bmatrix} 1 & 1 & |0| \\ m_l & m_s & |0| \end{bmatrix} \times \begin{bmatrix} 1/2 & 1/2 & |1| \\ s & s' & |m_s| \end{bmatrix} y_{1m_l}(\theta, \Phi)$$

As funções $\Sigma(p)$ classificam um conjunto infinito de espaços de Fock possíveis. No geral, para interações fortes, o espaço de Fock é diferente do "usual", i.e, $\Sigma(p) \neq 0$ pelo que o cálculo de perturbações é inútil, já neste ponto e sem necessidade de considerarmos outros obstáculos, tais como a natureza não abeliana de QCD, como veremos na lição III.

As transformações engendradas por \widehat{S} , chamam-se Transformações de Valatin-Bogoliubov: $|\widetilde{0}\rangle = S|0\rangle = Exp\left\{\widehat{Q}_{0}^{+} - \widehat{Q}_{0}\right\}|0\rangle$, com

$$\widehat{Q}_0^+(\Sigma) = \sum_{cf} \int d^3p \, \Sigma(p) \, M_{ss'}(\theta, \Phi) \widehat{b}_{fcs}^+(\overrightarrow{p}) \, \widehat{d}_{fcs'}^+(-\overrightarrow{p})$$

Com a combinação ${}^{3}P_{0}$ para paridade +:

$$M_{ss'}(\hat{p}) = -\sqrt{8\pi} \sum_{m_l m_s} \begin{bmatrix} 1 & 1 & |0| \\ m_l & m_s & |0| \end{bmatrix} \times \begin{bmatrix} 1/2 & 1/2 & |1| \\ s & s' & |m_s| \end{bmatrix} y_{1m_l}(\theta, \Phi)$$

- As funções $\Sigma(p)$ classificam um conjunto infinito de espaços de Fock possíveis. No geral, para interações fortes, o espaço de Fock é diferente do "usual", i.e, $\Sigma(p) \neq 0$ pelo que o cálculo de perturbações é inútil, já neste ponto e sem necessidade de considerarmos outros obstáculos, tais como a natureza não abeliana de QCD, como veremos na lição III.
- Para uma dada interação \mathcal{K} , corresponde uma função $[\Sigma(k)]$, de forma que temos $\Sigma[\mathcal{K}]$. Encontrar este funcional é o trabalho da Equação de Hiato de Massa.

Equação do Hiato de Massa I: Spinores

Com $N(k)^2 = 2(1 + \sin(\phi(k)))$, os spinores $u_s(k), v_s(k)$ são dados, para a representação Oliver – Péne por:

$$\begin{aligned} u_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 + \sin(\varphi(k))\beta + \cos(\varphi(k)) \ \overrightarrow{\alpha} \cdot \widehat{k} \end{bmatrix} u_{0s}, \quad \varphi(k) = 2\phi(k) \\ v_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 - \sin(\varphi(k))\beta - \cos(\varphi(k)) \ \overrightarrow{\alpha} \cdot \widehat{k} \end{bmatrix} v_{0s} \end{aligned}$$

Equação do Hiato de Massa I: Spinores

Com $N(k)^2 = 2(1 + \sin(\phi(k)))$, os spinores $u_s(k), v_s(k)$ são dados, para a representação Oliver – Péne por:

$$\begin{aligned} u_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 + \sin(\varphi(k))\beta + \cos(\varphi(k)) \overrightarrow{\alpha} \cdot \hat{k} \end{bmatrix} u_{0s}, \quad \varphi(k) = 2\phi(k) \\ v_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 - \sin(\varphi(k))\beta - \cos(\varphi(k)) \overrightarrow{\alpha} \cdot \hat{k} \end{bmatrix} v_{0s} \end{aligned}$$

Irocando
$$\{\sin(\varphi(k)), \cos(\varphi(k))\}$$
 por

$$\begin{aligned} \sin(\varphi(k)) &= m(k)/\sqrt{k^2 + m(k)^2} \quad \cos(\varphi(k)) = k/\sqrt{k^2 + m(k)^2}, \\ \text{com, } \sin^2 + \cos^2 &= 1 = \frac{m(k)^2}{k^2 + m(k)^2} + \frac{k^2}{k^2 + m(k)^2}, \\ E(k)^2 &= m(k)^2 + k^2, \end{aligned}$$

Equação do Hiato de Massa I: Spinores

Com $N(k)^2 = 2(1 + \sin(\phi(k)))$, os spinores $u_s(k), v_s(k)$ são dados, para a representação *Oliver - Péne* por:

$$\begin{aligned} u_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 + \sin(\varphi(k))\beta + \cos(\varphi(k)) \overrightarrow{\alpha} \cdot \hat{k} \end{bmatrix} u_{0s}, \quad \varphi(k) = 2\phi(k) \\ v_s(k) &= \frac{1}{N(k)} \begin{bmatrix} 1 - \sin(\varphi(k))\beta - \cos(\varphi(k)) \overrightarrow{\alpha} \cdot \hat{k} \end{bmatrix} v_{0s} \end{aligned}$$

• trocando {sin(
$$\varphi(k)$$
), cos($\varphi(k)$)} por
sin($\varphi(k)$) = $m(k)/\sqrt{k^2 + m(k)^2}$ cos($\varphi(k)$) = $k/\sqrt{k^2 + m(k)^2}$,
com, sin² + cos² = 1 = $\frac{m(k)^2}{k^2 + m(k)^2} + \frac{k^2}{k^2 + m(k)^2}$, $E(k)^2 = m(k)^2 + k^2$,
• obtêm-se, com $E \equiv E(k)$, $m \equiv m(k)$, as expressões usuais para os spinores
 $\sqrt{\pi + \frac{1}{2}} \left[-\frac{\Phi_0}{2} e^{-\frac{1}{2}} \right]$

$$\boldsymbol{u}_{s}(k) = \sqrt{\frac{E+m}{2E}} \begin{bmatrix} 1 & 0, s \\ \frac{\overrightarrow{\sigma} \cdot \hat{k}}{E+m} \Phi_{0,s} \end{bmatrix}, \quad \boldsymbol{v}_{s}(k) = \sqrt{\frac{E+m}{2E}} \begin{bmatrix} E+m \cdot \lambda 0, s \\ \chi 0, s \end{bmatrix}$$
$$\boldsymbol{u}_{s}^{IZ}(k) = \sqrt{\frac{E}{m}} \boldsymbol{u}_{s}^{P}(k), \quad \boldsymbol{v}_{s}^{IZ}(-k) = \sqrt{\frac{E}{m}} \boldsymbol{v}_{s}^{P}(k)$$

Como obter a função $\varphi(k)$? Eis um exemplo:

Somo obter a função $\varphi(k)$? Eis um exemplo:

Consideremos o Hamiltoniano de um quark livre,

$$H = \int \widehat{\Psi}^{P\dagger}(x) \left(m\beta - i \overrightarrow{\alpha} \cdot \overrightarrow{\nabla} \right) \widehat{\Psi^{P}}(x)$$

Somo obter a função $\varphi(k)$? Eis um exemplo:

Consideremos o Hamiltoniano de um quark livre,

$$H = \int \widehat{\Psi}^{P\dagger}(x) \left(m\beta - i \overrightarrow{\alpha} \cdot \overrightarrow{\nabla} \right) \widehat{\Psi}^{P}(x)$$

Como obter a função $\varphi(k)$? Eis um exemplo:

Definamos: $A_k = m$, $B_k = k$. Então $\cos(\varphi(k))A_k - \sin(\varphi(k))B_k = 0$ é a equação de mass gap que se obtém de por a zero o diagrama acima

Como obter a função $\varphi(k)$? Eis um exemplo:

Definamos: $A_k = m, \ B_k = k$. Então $\cos(\varphi(k))A_k - \sin(\varphi(k))B_k = 0$ é a equação de mass gap que se obtém de por a zero o diagrama acima

$$E_k = \pm \sqrt{A_k^2 + B_k^2} e H = \sqrt{k^2 + m^2} \beta$$

Como obter a função $\varphi(k)$? Eis um exemplo:

Definamos: $A_k = m$, $B_k = k$. Então $\cos(\varphi(k))A_k - \sin(\varphi(k))B_k = 0$ é a equação de mass gap que se obtém de por a zero o diagrama acima

Este procedimento generaliza-se para casos com interação $K^{ab}_{\mu\nu}(x-y)$: $H = \int d^3x \, q^+(x) \left(m\beta - i \overrightarrow{\alpha} \cdot \overrightarrow{\nabla} \right) q(x) + \int \frac{d^3x \, d^3y}{2} J^a_\mu(x) K^{ab}_{\mu\nu}(x-y) J^b_\nu(y).$ $J^a_\mu(x) = \overline{q}(x) \gamma_\mu \frac{\lambda^a}{2} q(x)$

Some set of the considered of the constant of the c

- Consideremos o operador de carga quiral $Q_5^0 = \int d^3x \widehat{\Psi}^{\dagger}(x) \gamma^0 \gamma^5 \widehat{\Psi}(x)$
- \checkmark Usando as definições de u e v, obtemos

$$\mathcal{Q}_5^0 = \int d^3p \ p \cos_{\varphi} \left(\overrightarrow{\sigma}_{ss'} \hat{b}_s^{\dagger}(p) \hat{b}_{s'}(p) + \overrightarrow{\sigma}_{ss'}^* \hat{d}_s(p) \hat{d}_{s'}^{\dagger}(p) \right) + \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_s^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_s(p) \right) \right]$$

- Consideremos o operador de carga quiral $Q_5^0 = \int d^3x \widehat{\Psi}^{\dagger}(x) \gamma^0 \gamma^5 \widehat{\Psi}(x)$
- Usando as definições de u e v, obtemos

$$\begin{aligned} \mathcal{Q}_{5}^{0} &= \int d^{3}p \ p \cos_{\varphi} \left(\overrightarrow{\sigma}_{ss'} \hat{b}_{s}^{\dagger}(p) \hat{b}_{s'}(p) + \overrightarrow{\sigma}_{ss'}^{*} \hat{d}_{s}(p) \hat{d}_{s'}^{\dagger}(p) \right) + \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s'}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s'}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s'}(p) \hat{d}_{s'}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s'}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s'}(p) \hat{d}_{s'}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s'}(p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s'}(p) \hat{d}_{s'}(-p) + \hat{d}_{s'}(-p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s'}(p) \hat{d}_{s'}(-p) + \hat{d}_{s'}(-p) \right) \right] \\ &+ \left[\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s'}(p) \hat{d}_{s'}(-p) \right] \\ &+ \left[\sin_{\varphi} \mu_{s'} \left(\hat{b}_{s'}(p) \right) \right] \\ &$$

- Consideremos o operador de carga quiral $Q_5^0 = \int d^3x \widehat{\Psi}^{\dagger}(x) \gamma^0 \gamma^5 \widehat{\Psi}(x)$
- Usando as definições de u e v, obtemos

$$\mathcal{Q}_{5}^{0} = \int d^{3}p \ p \cos_{\varphi} \left(\overrightarrow{\sigma}_{ss'} \hat{b}_{s}^{\dagger}(p) \hat{b}_{s'}(p) + \overrightarrow{\sigma}_{ss'}^{*} \hat{d}_{s}(p) \hat{d}_{s'}^{\dagger}(p) \right) - \left(\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right)$$

• O pião $|\pi\rangle$ é o bosão de Goldstone associado a Q_5^0 , isto é, à simetria quiral $\left[Q_5^0, \hat{H}\right] = 0$

O termo anómalo de
Bogoliubov cria um pião
:
$$Q_5^0 |\Omega\rangle = |\pi\rangle$$

Simetria Quiral:
 $\left[Q_5^0, \hat{H}\right] = 0$
Logo, $\hat{H} |\pi\rangle = 0$!

- Consideremos o operador de carga quiral ${\cal Q}_5^0=\int d^3x \widehat{\Psi}^\dagger(x)\gamma^0\gamma^5 \widehat{\Psi}(x)$
- Usando as definições de u e v, obtemos

$$\mathcal{Q}_{5}^{0} = \int d^{3}p \ p \cos_{\varphi} \left(\overrightarrow{\sigma}_{ss'} \hat{b}_{s}^{\dagger}(p) \hat{b}_{s'}(p) + \overrightarrow{\sigma}_{ss'}^{*} \hat{d}_{s}(p) \hat{d}_{s'}^{\dagger}(p) \right) + \left(\sin_{\varphi} \mu_{ss'} \left(\hat{b}_{s}^{\dagger}(p) \hat{d}_{s'}^{\dagger}(-p) + \hat{d}_{s'}(-p) \hat{b}_{s}(p) \right) \right)$$

O termo anómalo de Bogoliubov cria um pião : $Q_5^0 |\Omega\rangle = |\pi\rangle$ Simetria Quiral: $\left[Q_5^0, \hat{H}\right] = 0$ Logo, $\hat{H} |\pi\rangle = 0$!

- O pião $|\pi\rangle$ é o bosão de Goldstone associado a Q_5^0 , isto é, à simetria quiral $\left[Q_5^0, \hat{H}\right] = 0$
- Esta quebra expontânea da simetria quiral, $S\chi SB$, consequência de interações fortes, mas independente da forma particular destas, tem inúmeras consequências na física dos hadrões tais como PCAC; espalhamento $\pi\pi$ e, como vimos na primeira lição, na força N-N. Mais! Uniformiza, debaixo da mesma física o espalhamento "scattering" q-q e a aniquilação $q - \bar{q}$ e portanto permite o tratamento controlado de canais acoplados (unitarização). Permite ainda compreender o antigo puzzle das diferenças de massa $\Delta - N$ comparada com o caso $\rho - \pi$.